

# Phosphate availability and green manures

#### Christine Watson and the "PLINK" Team









From Cornish (2009)

## A spectrum of P management options



| PHYSICAL   | Good soil structure                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------|
| CHEMICAL   | Phosphate source (fertilizer)<br>pH                                                                        |
| BIOLOGICAL | Add enzymes                                                                                                |
|            | Add fungi (increase effective root length)                                                                 |
|            | Plant efficiency (varieties,<br>root architecture,<br>translocation, phosphatases,<br>anion secretion etc) |
| ECOSYSTEM  | Rotations, green manures, cover crops, long pastures                                                       |

Adapted from Conyers & Moody (2009)



#### CROP ROOT SYSTEMS (Weaver 1926; Weaver & Bruner 1927)



(MLURI W Towers)



## Root hairs and P uptake of barley varieties in the field





Days after germination

## So can we design rotations to use P efficiently?





#### **Green manures/cover crops**



- Traditionally regard them as either adding N (through fixation) or preserving N (preventing leaching)
- But they also have potential as biological engines for P – they don't add P but they can change both the amount and forms of P for the following crop

### **Rotational Aspects**



- Autumn sown green manures (GM)
  - GM crops chosen for their perceived ability to liberate P
  - GM established in the autumn
  - Incorporated prior to spring crop
- Spring sown crops
  - Crops grown for their perceived ability to liberate P and use it directly themselves
  - Potential P benefits later in the rotation

#### Autumn sown green manures



#### GM yield in spring (Dry tonnes / ha)

GM P Uptake (kg / ha)

| Сгор              | +PR  | -PR  | %<br>Change<br>from -PR | Сгор              | +PR  | -PR  | %<br>Change<br>from -PR |
|-------------------|------|------|-------------------------|-------------------|------|------|-------------------------|
| Fallow            | 0.70 | 0.46 | 152                     | Fallow            | 2.32 | 1.39 | 167                     |
| Mixed<br>Brassica | 0.78 | 0.51 | 152                     | Mixed<br>Brassica | 2.49 | 1.57 | 159                     |
| Field<br>Beans    | 0.98 | 0.82 | 120                     | Field<br>Beans    | 3.39 | 2.77 | 122                     |
| Forage<br>Rape    | 0.58 | 0.37 | 157                     | Forage<br>Rape    | 1.91 | 1.14 | 168                     |
| Forage<br>Rye     | 0.68 | 0.48 | 142                     | Forage<br>Rye     | 2.09 | 1.32 | 158                     |

Data from Abbey Home Farm site

### Spring sown crops







Windshiel Farm

#### **Buckwheat**

### Spring sown crops: Crop biomass





#### Data from Windshiel Farm

### Spring sown crops: P uptake





Data from Windshiel Farm

#### **Compost field trial 2009**









- Composting started 16<sup>th</sup> January 2009
  - Organic Recycling Limited on concrete pad
    - uncovered
  - PAS100 standard
  - Substrate
    - •2 tonnes wheat straw
    - •6 tonnes cabbage leaf and brussel sprout waste
  - PR treatments (granular formulation)
    - •0 kg (-PR) and 250 kg (+PR)

## Application of compost to trials



- Plot size 120 m<sup>2</sup>
- 96 kg compost applied per plot
  - Based on 8 t/ha application rate
  - Estimated to supply 100 kg P per ha (+PR) and 20 kg P per ha (-PR) based on previous data
- Total P actually applied (kg P per ha)
  - From compost
    - Around 50% of expected amount (due to losses)
  - From PR ~ 72 kg P per ha

## **Composting 2009**



- Predicted P in compost not as high in reality
  - variability shown between batches sent to each site, although all from same compost
    - Total P as well as AEM P
- Factors that influenced P?
  - Environment
    - Temperature
    - Rainfall
  - Chemistry
    - Ca / P interactions

### **Compost field trial**



- Windshiel
  - Farmer's crop: Barley silage mixture



## Summary: Compost



- Co-compositing can have beneficial effects on P availability
  - Results not always consistent
  - Longer term benefits may be possible
- Adding more PR to compost does not always increase P availability in the short term
  - AEM-P affected by citric acid levels
    - High CA levels can reduce AEM-P
  - Importance of Ca?

### So, what did we learn?



- Crop choice influences P use
- Green manures and cover crops are not only about N
- P from PR can be available in short term even a 10% increase in available P can make a difference
- Crops good at extracting P e.g. buckwheat may have other benefits e.g. attracting pollinators
- Think about intercropping options use your imagination!

#### Acknowledgements



#### •Sponsors:

Defra Sustainable Arable LINKScottish Government RERAD



•SAC

Newcastle University

- •Dr Tony Edwards
- Prof David Atkinson
- •Mr Johnny Johnston

#### Industry Partners:

- •Bulmer Foundation
- •SOPA
- Soil Association
- •J & H Bunn Ltd
- •Tio Ltd
- •Abbey Home Farm
- •The Leen
- •Windshiel Farm
- Organic Recycling Ltd
- •Organic Farm Foods Ltd
- •Organic Green Orchards Ltd
- Mark Measures Associates



Svccess through Knowledge

## Amounts of organic matter returned by crop residues



|               | kg/ha | Estimated<br>P kg/ha | % increase in top<br>20cm soil<br>BEFORE<br>decomposition |
|---------------|-------|----------------------|-----------------------------------------------------------|
| 1 yr ley      | 4900  | 5                    | 0.2                                                       |
| 3 yr ley      | 7850  | 8                    | 0.4                                                       |
| Winter cereal | 2400  | 2.5                  | 0.1                                                       |
| Spring cereal | 1400  | 1.5                  | <0.1                                                      |
| Red clover    | 2200  | 2                    | 0.1                                                       |
| Potatoes      | 300   | 0.5                  | <0.1                                                      |
| 10t FYM       | 4300  | 6                    | 0.2                                                       |

#### Residue figures from Davies et al. 1972